

ACTIVITY: De	tention Example for HEC-1 & HEC-HMS	ST – 12						
Overview of Introduction HEC-1								
Software	HEC-1 is a commonly-used hydrograph progra Corps of Engineers (USACE) over 30 years ag mid-1980s. The HEC-1 program and the assoc downloaded from the USACE website at:	HEC-1 is a commonly-used hydrograph program originally developed by the U.S. Army Corps of Engineers (USACE) over 30 years ago, and adapted to personal computers in the mid-1980s. The HEC-1 program and the associated HEC-1 user's manual can be downloaded from the USACE website at:						
	http://www.hec.usace.army.	mil/software/legacysoftware/hec1/hec1.htm						
	HEC-1 is a DOS-based program for which the running the program. Each line of the HEC-1 when computers used punched cards). See the first two letters of each line (columns 1-2) desi The example input file on page ST-12-6 uses the	user prepares an input data file prior to input file is called a "card" (from days example input file on page ST-12-8. The gnate the type of data shown on that line. he following 16 types of cards:						
	ID = project identification, * = comn	nents, IT = time specification						
	IN = input data interval, IO = output co	ontrol, $KK = location identifier,$						
input	BA = basin area, PB = basin total precision PB	ipitation,						
"cards"	PC = cumulative precipitation, RS = st	orage routing, $LS = loss$ rate,						
'	UD = unit dimensionless hydrograph,	SQ = discharge data,						
	SV = storage volume data, SE = elevat	ion data, $ZZ = end of run$						
	fields. It is recommended that the HEC-1 user should print the input card description for each type of input card used. Each line contains up to 10 data fields with a maximum line length of 80 spaces or columns. The data fields are in a "fixed-format" unless otherwise specified by a *FREE card. The data fields each contain 8 spaces, except for the first data field which only has 6 spaces (columns 3-8). Numbers should be right-justified within each 8-space field and/or contain a decimal point.							
	The NRCS Type II rainfall distribution is entered on PC or PI cards; the example on page ST-12-8 is shown using cumulative rainfall fractions (PC cards) at intervals of 0.1 hours. Do not use PH cards to specify the intensity-duration-frequency curve, as this rainfall pattern does not match the NRCS Type II rainfall distribution.							
	Postdeveloped watershed input parameters (area, curve number, time of concentration) are entered on the BA, LS and UD cards. The basin area is entered as square miles on the first field of the BA card. The curve number is entered on the second field of LS card. Instead of the time of concentration, the lag time (in hours) is entered on the first field of the UD card, with the lag time equal to 2/3 of Tc.							
,	The overall elevation-discharge-volume (E-Q- fields of the cards labeled SE, SQ, and SV. The elevation (SE), cubic feet per second (SQ), and an example of HEC-1 input file (for iteration # HEC-1 output file (for iteration #2 of the deten	V) relationship is entered on matching the units for the E-Q-V curve are: feet acre-feet (SV). The following pages show of the detention basin design *) and tion basin design **):						
Worksheet #2	Pages Contents of I	HEC-1 file File name						
from ST-11 is	ST-12-8 * Initial detent	ion estimate HEC1-ex1.dat						
recommended as	ST-12-9 to ST-12-11 ** Final detention	on computation output HEC1-ex2.out						
a starting point for storage volume estimates	 * Initial detention estimate correspond ** Final detention computation using th 	s to the example spreadsheet in ST-11. he revised outlet configuration in ST-11.						
Knoxville BMP Manı Stormwater Treatmer	nal ST-12 - 2	May 2003						

ACTIVITY: Detention Example for HEC-1 & HEC-HMS

ST – 12

To improve the output precision of a HEC-1 run by a decimal point, perform these simple modifications:

- Multiply the basin area (BA card) by a factor of 10.
- Multiply either the pond areas or pond volumes (SA or SV cards) by a factor of 10.
- Multiply the pond outflows (SQ cards) by a factor of 10.

The example HEC-1 input file on page ST-12-8 includes the three modifications listed above (shown in bold print), using SV cards rather than SA cards. After running the HEC-1 file, the peak inflow and outflow values should be divided by 10 to determine the actual output values.

Hints for Using HEC-1 Example File After downloading and installing the HEC-1 program, it will run by clicking on the file HEC-1.EXE. As part of the HEC-1 program, a screen will pop up to ask for the input filename, the output filename, and an optional DSS filename (which is not needed). The input file needs to be in the same subdirectory as the HEC-1 program.

🚟 D: \H	lec-1\HEC1.EXE
ENTER	INPUT FILENAME <no default=""> ===></no>
hec1-6	ex2.dat
ENTER	OUTPUT FILENAME <default: con=""> ===></default:>
hec1-	ex2.out
ENTER PRESS –	DSS FILENAME <default: h1dss=""> <enter> IF NOT USING DSS ===></enter></default:>

- The input data files for the initial design configuration (hec1-ex1.dat) and for the final outlet structure configuration (hec1-ex2.dat) are included in this BMP. The input data file can be easily edited using any type of ASCII text editor (such as Notepad). Align input data into the correct columns.
- The following cards each only need one value changed: BA, PB, LS, UD, RS. BA is the basin area in square miles, PB is the 24-hour rainfall in inches, LS is the postdeveloped curve number, UD is the time of concentration multiplied by 0.67, and RS is the starting water surface elevation of the analysis.
- The following cards need to be recomputed and revised whenever the detention basin volumes and/or outlet structure configuration are changed: SE, SQ, SV. A new E-Q-V curve can be computed by hand or by spreadsheet. Provide a sufficient number of values to accurately reflect the storage and discharge curves.
- The HEC-1 output data is formatted by the program for the wide green computer paper commonly used 30 years ago. To print onto 8.5" x 11" paper, shrink all of the output text to Courier New, font size 8, with 0.25" margins all around the page. Or print the results using paper with a landscape orientation.

ACTIVITY: De	tention Example for HEC-1 & HEC-HMS	ST – 12						
Overview of HEC-HMS Software	Overview of HEC-HMS SoftwareIntroductionThe HEC-HMS is a windows-based hydrograph program developed by the U.S. Arm Corps of Engineers (USACE) to succeed HEC-1. The HEC-HMS software program associated manuals can be downloaded from the USACE website at:							
	http://www	.hec.usace.army.mil/software/software.html						
	Within the HEC-HMS program, the user create each modeling run:	es three different types of components for						
, <u>-</u>	• Basin: size, precipitation loss functions, routing parameters, routing lengths							
HEC-HMS	and channels, baseflow, reserve	pirs.						
components	• Meteorological: precipitation gages, i	rainfall distributions, storm events.						
	• Control: duration of analysis, time int	ervals, computational increment.						
	Different basin configurations and outlet structures can be tested by mixing and matching different components for a modeling run. After each modeling run, the routing results can be displayed by selecting each element from the basin schematic and choosing "View Results" from the menu. Graphical output and/or a global summary sheet can also be viewed. The HEC-HMS program can import HEC-1 input files, which can be helpful in preparing reports and graphs.							
	The current version of HEC-HMS will only allow the user to directly input one orifice and one weir. For structures with more than one orifice, the user will have to compute the elevation-storage-discharge data separately (by hand or by spreadsheet) prior to entering the input data.							
	The HEC-HMS data interface can be confusing. For instance, sometimes it is not obvious how to edit existing data files for the various components. For most screens, select the file with the cursor and then choose "Edit" from the pulldown menu.							
	The HEC-HMS program is much more complicated than the HEC-1 program and will require a longer learning curve to use effectively. For most engineers, it will take some patience to learn how to use the HEC-HMS model. Read and review the available training documents (Users Manual, Technical Reference Manual) while practicing with the data sets provided by the U.S. Army Corps of Engineers.							
	The NRCS Type II rainfall distribution can be once, and then used over and over again for dif into new project files as needed. The rainfall of run by choosing "Run Options" and then selec	typed into the precipitation gage data fields fferent projects by transfering gage data listribution can be adjusted on each model ting a precipitation ratio.						
Other Hints for Using	• The program user must save each comp save the project file prior to exiting the	oonent as it is being edited, and also must HEC-HMS program.						
HEC-HMS Software	• The component with meteorological data, once it has been edited correctly, can be used and reused for all project files. The total rainfall amount can be adjusted on each model run by selecting "Run Options" from the Run Manager screen.							
	• Each iteration (predeveloped & postdev model (shown on page ST-12-12) by pl alignment, reducing the number of basi	veloped) can be run within the same basin acing the design elements in parallel n files and components needed.						

ACTIVITY: Detention Example for HEC-1 & HEC-HMS ST – 12									
	The second iteration was computed in the HEC-1 output file shown on pages ST-12-9 through ST-12-11. Both HEC-1 and HEC-HMS will require the user to first compute the overall elevation-discharge-volume (E-Q-V) curve. The E-Q-V curve for this example was taken from spreadsheets shown on pages ST-11-13 to ST-11-16 in the previous BMP.								
	After the stormwater detention computations are completed, an additional 15% storage volume is provided. Multiply the 100-year peak flow storage volume by 115% to determine an elevation adjustment value. Raise the top of the concrete riser (or other principal outlet control) by this value to provide 15% additional storage volume. An example of this computation is shown on page ST-10-8.								
HEC-1 Results	Predevelopment Flows (HEC-1 Version 4.1, June 1998)								
			Rot	urn period	Peak flow	I ime of neak inflow			
			<u>Rei</u>	1 waan	0 8 of	<u></u> 11.02 hours			
HEC-1 input file				1-year 2 year	$0.6 \ CJs$	11.95 <i>nours</i>			
without detention				2-year	1.0 CJS $2 \Lambda cfs$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
for: $A = 1.5$ acres				J-yeur 10-vear	$\frac{2.4}{3.2}$ cfs				
CN = 75			-	25-vear	40 cfs				
Tc = 0.4 hours			1	00-year	5.2 cfs				
	Iteration #1:	HEC-1 Results	(Version	4.1, June 199	98)	Time of			
	<u>Return period</u>	Peak inflow	Peak outflow	, Target	Peak WSE	peak outflow			
	1-year	3.3 cfs	0.6 cfs	0.8 cfs 🗸	957.53	12.20 hours			
(Results from the	2-year	4.9 cfs	1.2 cfs	1.6 cfs 🗸	958.24	12.17 "			
HEC-1 input data file	5-year	6.4 cfs	2.3 cfs	2.4 cfs 🗸	<i>958.73</i>	12.10 "			
on page ST-12-8.)	10-year	7.8 cfs	3.1 cfs	3.2 cfs 🖌	959.11	12.10 "			
L	25-year	9.2 cfs	3.8 cfs	4.0 cfs 🖌	959.47	12.10 "			
	100-year	11.1 cfs	5.1 cfs	5.2 cfs 🗸	959.90	12.10 "			
	Iteration #2:	HEC-1 Results	(Version	4.1, June 199	98)				
						Time of			
	<u>Return period</u>	Peak inflow	Peak outflo	w Target	Peak WSE	<u>peak outflow</u>			
· · · · · · · · · · · · · · · · · · ·	- 1-year	3.3 cfs	0.2 cfs	0.8 cfs 🖌	958.30	12.97 hours			
(Results from the	2-year	4.9 cfs	1.2 cfs	1.6 cfs 🗸	958.81	12.17 "			
HEC-1 output data	5-year	6.4 cfs	2.3 cfs	2.4 cfs 🗸	959.31	12.10 "			
through ST-12-11)	10-year	7.8 cfs	3.1 cfs	3.2 cfs 🗸	959.72	12.10 "			
	<u></u> 25-year	9.2 cfs	3.7 cfs	4.0 cfs 🗸	960.11	12.10 "			
	100-year	11.1 cfs	5.4 cfs	5.2 cfs 🗸	960.58	12.10 "			
HEC-HMS	Predevelopme	nt Flows (HEC	C-HMS Ver	sion 2.2.1. O	ctober 2002)				
Results	i reacterophie					T : (
		1 ime of							
			<u>Ket</u>	urn perioa	<u>Реак flow</u>	<u>peak inflow</u>			
HFC-HMS input file				1-year	$0.83 \ cfs$	11:58 hours			
without detention for				2-year	$1.60 \ cfs$				
A = 1.5 acres				<i>S-year</i>	2.40 cfs				
CN = 75			-	10-year	5.27 cfs				
Tc = 0.4 hours				25-year	4.10 cfs				
			Ι	00-year	3.34 cfs				
	7								
Knoxville BMP Manua	u l	C	TT 12 6			M 2002			
siormwaier Treatment		3	1-12-0			May 2003			

ACTIVITY: Detention Example for HEC-1 & HEC-HMS

ST – 12

	Iteration #1:	HEC-HMS R	esults (Versi	on 2.2.1, Oc	tober 2002)	
						Time of
	Return period	Peak inflow	Peak outflow	Target	Peak WSE	peak outflow
Using a HEC-HMS	1-vear	3.7 cfs	0.7 cfs	0.8 cfs 🗸	957.68	12:10 hours
project file similar	2-year	5.3 cfs	1.4 cfs	1.6 cfs 🗸	958.34	12:08 "
to input file on page	5-vear	6.9 cfs	$2.5 \ cfs$	2.5 cfs ✓	958.82	12:06 "
ST-12-8, but with an	10-vear	8.3 cfs	$3.3 \ cfs$	$3.3 cfs \checkmark$	959.19	12:06 "
embedded Type II	25-year	9.7 cfs	$4.0 \ cfs$	4.1 cfs ✓	959.54	12:06 "
	100-year	11.6 cfs	5.3 cfs	5.3 cfs 🗸	959.96	12:06 "
	Iteration #2:	HEC-HMS R	esults (Versi	on 2.2.1, Oc	tober 2002)	
	Return period	Peak inflow	v Peak outflow	w Target	Peak WSE	Time of peak
	1 year	3.7 cfs	0.3 cfs	0.8 cfs	058 48	12:36 hours
(Using a HEC-HMS	2 year	5.7 CJs	1.5 cfs	1.6 cfs	958.40	12.30 nours
project file similar	2-yeur 5 year	5.5 CJs	1.0 cfs	2.5 cfs	950.97	12:06 "
ST-12-11 with an	J-yeur	0.9 CJS	2.0 cfs	2.5 cfs	959.47	12.00
embedded Type II	10-year	$0.5 \ CJs$	3.5 CJS	J.J cfs	959.07	12.00
NRCS rainfall.)	25-year	9.7 CJS	5.0 CJs	$5.3 cfs \mathbf{Y}$	900.24	12.00
	100-yeur	11.0 CJS	0.5 CJS	5.5 CJS A	900.04	12.04
Adding more points	By adding extra	a E-Q-V points	at elevations	960.60, 960.	70 and 960.80), the detention
increases accuracy of	routing comput	ations for the	100-year storm	n (for iteratio	on #2) become	more accurate:
routing computation.	100-year	11.6 cfs	5.5 cfs	5.3 cfs 🖌	960.68	12:04 hours
	Detention routi since the initial account the firs must be include	ng is necessary volume estimate t flush volume red into a project	to verify that ate method with requirements. to site very ear	design estin thin the TR-: Available of ly in the desi	nates are adequented by the second se	uate, particularly loes not take into e and configuration
Comparison of HEC-1 and HEC-HMS Programs	 HEC-HMS has a few advantages over HEC-1 for detention routing analysis: The NRCS Type II storm can be easily selected as a menu option, instead of requiring to be input as a rainfall distribution with PC or PI cards. Basin areas can be entered with more precision; therefore, the user does not have to use the "multiply & divide by 10" procedure as per HEC-1 in order to add a decimal point to the final answers. U.S. Army Corps of Engineers is making adjustments/improvements to the HEC-HMS program each year. Therefore, HEC-HMS will be state-of-the-art for many years, while HEC-1 is no longer actively supported. Printing and checking 					
	The advantages	s of HEC-1 inc	lude:			
	• The UI	FC_{-1} input date	a file (and/or o	utnut file) in	easy to edit of	nd contains all input
	inform when c	ation in one loc compared to the	e multiple files	le data file is s used by HE	s easier to arch	nive, share and print
	• HEC-1 learn at	is not as comp nd master.	blicated as HE	C-HMS and	is easier for o	ccasional users to
References	153, 154, 158, Knoxville Stor	175, 180, 181, mwater and S	186, 187, 200 Street Ordina	(see BM	MP Manual Ch	hapter 10 for list)
Knoxville BMP Manua	ıl					
Stormwater Treatment			ST-12 - 7			May 2003

ACTIVITY: Detention Example for HEC-1 & HEC-HMS $ST - 12$									
ID HEC-1 run for BMP Manual Initial volume estimate with the ID ST-12, Detention Examples initial outlet structure configuration. ID 10-YEAR 24-HOUR STORM									
* T * T * m * I	<pre>* * This example problem has 1.5 acres, CN = 90, Tc = 0.1 hour. * The basin area (BA), pond volumes (SV) and pond outflows (SQ) are * multiplied by a factor of 10 to increase the precision of analysis. * In other words, the basin area is input as 0.02344 square miles (15 acres).</pre>								
* D * C * M	etention ity of Kn ay 1, 200	basin is noxville)3 v1-ev1 da	s initial - Engine	ly sized. ering De	l with sp partment	readshee - Ken O	t ST-11 liver	(Workshe	eet #2).
* IT 2	01MAY03	0000	1500			2000			
IN 6 IO 5 *	0								
KK AREA1 BA. 02344	Runc	off into * E	detentic Basin are	on basin a must b	e entere	d as squ	are mile	s.	
PB 4.8		*]	otal pre	cipitati	on must 1	be enter	ed as in	ches.	
PC 0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
PC 0 010	0 012	0 013	0 014	0 015	0 016	0 017	0 018	0 020	0 021
PC 0 022	0 023	0 024	0 026	0 027	0 028	0 029	0 031	0 032	0 033
DC 0.022	0.025	0.024	0.020	0.027	0.020	0.020	0.031	0.032	0.035
PC 0.034	0.036	0.037	0.038	0.040	0.041	0.042	0.044	0.045	0.04/
PC 0.048	0.049	0.051	0.052	0.054	0.055	0.05/	0.058	0.060	0.061
PC 0.063	0.065	0.066	0.068	0.070	0.071	0.073	0.075	0.076	0.078
PC 0.080	0.082	0.084	0.085	0.087	0.089	0.091	0.093	0.095	0.097
PC 0.099	0.101	0.103	0.105	0.107	0.109	0.111	0.113	0.116	0.118
PC 0 120	0 122	0 125	0 127	0 130	0 132	0 135	0 138	0 141	0 144
PC 0 147	0 150	0 153	0 157	0 160	0 163	0 166	0 170	0 173	0 177
FC 0.147	0.100	0.133	0.137	0.100	0.103	0.100	0.170	0.175	0.177
PC 0.181	0.185	0.189	0.194	0.199	0.204	0.209	0.215	0.221	0.228
PC 0.235	0.243	0.251	0.261	0.271	0.283	0.307	0.354	0.431	0.568
PC 0.663	0.682	0.699	0.713	0.725	0.735	0.743	0.751	0.759	0.766
PC 0.772	0.778	0.784	0.789	0.794	0.799	0.804	0.808	0.812	0.816
PC 0.820	0.824	0.827	0.831	0.834	0.838	0.841	0.844	0.847	0.850
PC 0 854	0 856	0 859	0 862	0 865	0 868	0 870	0 873	0 875	0 878
	0.000	0.000	0.002	0.000	0.000	0.070	0.075	0.075	0.070
FC 0.000	0.002	0.005	0.007	0.009	0.091	0.095	0.095	0.090	0.900
PC 0.902	0.904	0.906	0.908	0.910	0.912	0.914	0.915	0.917	0.919
PC 0.921	0.923	0.925	0.926	0.928	0.930	0.931	0.933	0.935	0.936
PC 0.938	0.939	0.941	0.942	0.944	0.945	0.947	0.948	0.949	0.951
PC 0.952	0.953	0.955	0.956	0.957	0.958	0.960	0.961	0.962	0.964
PC 0.965	0.966	0.967	0.968	0.970	0.971	0.972	0.973	0.975	0.976
PC 0.977	0.978	0.979	0.981	0.982	0.983	0.984	0.985	0.986	0.988
PC 0.989	0.990	0.991	0.992	0.993	0.994	0.996	0.997	0.998	0.999
PC 1 000	0.000	0.001	0.002	0.000	0.001	0.000	0.007	•••••	0.000
	90	*	This ic	the nest	devrelance	d curve	numbor (CM = 90	
	90	+	IIIIS IS	the post	leverope	u curve		CN-90).	م ر الم
UD .067 *		^	This is	the SCS	lag time	in nour	s (equal	to 2/3	OI TC).
kk ponda RS 1	. Rout ELEV	te the hy 955.0	ydrograph 0	n from Ar	ea 1 thr	ough Pon	d A		
SV O	0.0807	0.1876	0.3230	0.4886	0.6869	0.9196	1.1887	1.4964	1.8448
SV2.2358	2.6717	3.1543	3.6859	4.2685					
SQ 0.00	2.4	3.8	4.9	5.7	6.4	7.7	17.2	29.0	38.2
SQ 53.8	164.2	198.0	208.0	218.0					
SE 955 0	955 5	956 0	956 5	957 0	957 5	958 0	958 5	959 0	959.5
SE 960 0	960 5	961 0	961 5	962 0		200.0		202.0	
	200.3	JUT . U	JUT.J	JUZ • U					
22									
Knoxville B	MP Manual								
Stormwater	Stormwater Treatment ST-12 - 8 May 2003								

ACTIVITY: Detention Example for HEC-1 & HEC-HMS	ST – 12

* *	
* FLOOD HYDROGRAPH PACKAGE (HEC-1) *	
* U.S. ARMY CORPS OF ENGINEERS *	
* HYDROLOGIC ENGINEERING CENTER *	
* VERSION 4.1 *	
* 609 SECOND STREET *	
^ DAVIS, CALIFORNIA 95616 ^ * RIN DATE 1MAYO3 TIME 11.20.31 *	
* (916) 756-1104 *	
* *	

X X XXXXXXX XXXXX X	
X X X X X XX	
X X X X X X	
X X X X X X	
X X XXXXXXX XXXXX XXX	
THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOW HEC1GS, HEC1DB, AND HEC1KW.	NN AS HEC1 (JAN 73),
THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHA WITH THE 1973-STYLE INPUT STRUCTURE.	ANGED FROM THOSE USED
THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REV	VISIONS DATED
28 SEP 81. THIS IS THE FORTRAN77 VERSION	
NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DSS:WRITE STAGE FREQUENCY	DAMAGE CALCULATION,
DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL	
LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM	
HEC-1 INPUT	
LINE	8 9 10
1 ID HEC-1 run for DMD Manual Detention rating of	mputations with the
2 ID ST-12. Detention Examples final outlet struct	ture configuration
3 ID 10-YEAR 24-HOUR STORM Only the SQ cards h	nave been changed.
* This example problem has 1.5 acres CN = 90 To = 0.1 k	nun
* The basin (BA), pond volumes (SV) and pond outflows (S(2) are
* multiplied by a factor of 10 to increase the precision	of analysis.
* In other words, the basin area is input as 0.02344 squa	are miles (15 acre
* Detention basin was initially sized wains NDCC mp 55	thodology
* City of Knoxville - Engineering Department - Ken Oliver	<u>.</u>
* May 1, 2003	-
* File: Hecl-ex2.dat	
*	
Δ TT 2 01May03 0000 1500 2000	
5 IN 6	
6 IO 5 0	
Knowille BMP Manual	
Stormwater Treatment ST-12 - 9	May 2003

ST – 12

*		- –							
* 1-yea	ar storm	2.5"							
* 2-yea	ar storm	3.3"							
* 5-yea	ar storm	4.1"							
* 10-yea	ar storm	4.8"							
* 25-yea	ar storm	5.5"							
* 50-yea	ar storm	6.1"							
* 100-yea	ar storm	6.5"							
*									
7 KK AREA	Al Ru	noff int	o detent	ion basir	1				
8 BA .0234	4 (=	= 15.0 ac	res, whi	ch is ter	times	the actu	al area	of 1.5 a	cres)
9 PB 4.	8								
10 PC 0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
11 PC 0.010	0.012	0.013	0.014	0.015	0.016	0.017	0.018	0.020	0.021
12 PC 0.022	0.023	0.024	0.026	0.027	0.028	0.029	0.031	0.032	0.033
13 PC 0.034	0.036	0.037	0.038	0.040	0.041	0.042	0.044	0.045	0.047
14 PC 0 048	0 049	0 051	0 052	0 054	0 055	0 057	0 058	0 060	0 061
15 PC 0 063	0.065	0.051	0.052	0.031	0.000	0.007	0.000	0.000	0.001
16 PC 0.000	0.000	0.000	0.000	0.070	0.071	0.075	0.073	0.070	0.070
17 DC 0.000	0.002	0.004	0.005	0.007	0.000	0.001	0.000	0.055	0.007
17 PC 0.099	0.101	0.105	0.105	0.107	0.109	0.111	0.110	0.110	0.110
10 PC 0.120	0.122	0.123	0.127	0.130	0.152	0.135	0.130	0.141	0.144
19 PC 0.147	0.150	0.153	0.157	0.160	0.103	0.166	0.170	0.173	0.1//
20 PC 0.181	0.185	0.189	0.194	0.199	0.204	0.209	0.215	0.221	0.228
21 PC 0.235	0.243	0.251	0.261	0.271	0.283	0.307	0.354	0.431	0.568
22 PC 0.663	0.682	0.699	0.713	0.725	0.735	0.743	0.751	0.759	0.766
23 PC 0.772	0.778	0.784	0.789	0.794	0.799	0.804	0.808	0.812	0.816
24 PC 0.820	0.824	0.827	0.831	0.834	0.838	0.841	0.844	0.847	0.850
25 PC 0.854	0.856	0.859	0.862	0.865	0.868	0.870	0.873	0.875	0.878
26 PC 0.880	0.882	0.885	0.887	0.889	0.891	0.893	0.895	0.898	0.900
27 PC 0.902	0.904	0.906	0.908	0.910	0.912	0.914	0.915	0.917	0.919
28 PC 0.921	0.923	0.925	0.926	0.928	0.930	0.931	0.933	0.935	0.936
29 PC 0.938	0.939	0.941	0.942	0.944	0.945	0.947	0.948	0.949	0.951
30 PC 0.952	0.953	0.955	0.956	0.957	0.958	0.960	0.961	0.962	0.964
31 PC 0.965	0.966	0.967	0.968	0.970	0.971	0.972	0.973	0.975	0.976
32 PC 0.977	0.978	0.979	0.981	0.982	0.983	0.984	0.985	0.986	0.988
33 PC 0.989	0.990	0.991	0.992	0.993	0.994	0.996	0.997	0.998	0.999
34 PC 1.000									
35 LS 0	90								
36 UD .067									
*									
37 KK PONDA									
38 KM	ROUT	E HYDROG	RAPH FRO	M AREA A	THROUGH	POND A			
39 RS 1	FLEV	955 0			1111100001				
40 SV 0	0 0807	0 1876	0 3230	0 4886	0 6869	0 9196	1 1887	1 4964	1 8448
40 SV 0	2 6717	3 1543	3 6859	1 2685	0.0005	0.9190	1.100/	1.4904	1.0440
41 SV 2.2550	2.0/1/	0 4	0.5	4.2005	06	07	3 0	17 0	27 0
42 SQ 0.0	0.3 41 E	110 4	208.0	219 0	0.0	0.7	3.0	17.0	27.0
43 SQ 35.2	41.5	119.4	208.0	218.0					
44 SE 955.0	955.5	956.0	956.5	957.0	957.5	958.0	958.5	959.0	959.5
45 SE 960.0	960.5	961.0	961.5	962.0					
46 ZZ									
	SCH	IEMATIC D	IAGRAM O	F STREAM	NETWORK				
INPUT									
LINE	(V) ROUI	ING	(->) DIVEF	RSION OF	R PUMP FL	OW		
NO.	(.) CONN	IECTOR	(<-) RETUR	RN OF DI	VERTED O	R PUMPED	FLOW	
7	AREA1								
Knoxville BMP M	lanual								
Stormwater Trea	tment			ST-12 - 10					May 2003

ST - 12**ACTIVITY:** Detention Example for HEC-1 & HEC-HMS V 77 37 PONDA (***) RUNOFF ALSO COMPUTED AT THIS LOCATION FLOOD HYDROGRAPH PACKAGE (HEC-1) * U.S. ARMY CORPS OF ENGINEERS JUN 1998 HYDROLOGIC ENGINEERING CENTER * VERSION 4.1 * 609 SECOND STREET * * DAVIS, CALIFORNIA 95616 RUN DATE 1MAY03 TIME 11:20:31 * (916) 756-1104 ***** HEC-1 run for BMP Manual --- Detention rating computations with the ST-12, Detention Examples final outlet structure configuration 10-YEAR 24-HOUR STORM Only the SQ cards have been changed. 6 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE 2MINUTES IN COMPUTATION INTERVAIDATE1MAY 3STARTING DATEITIME0000STARTING TIMENQ1500NUMBER OF HYDROGRAPH ORDINATESNDDATE3MAY 3ENDING DATENDTIME0158ENDING TIMEICENT1 HYDROGRAPH TIME DATA ΤТ NMIN 2 MINUTES IN COMPUTATION INTERVAL COMPUTATION INTERVAL .03 HOURS TOTAL TIME BASE 49.97 HOURS ENGLISH UNITS DRAINAGE AREA SQUARE MILES PRECIPITATION DEPTH INCHES LENGTH, ELEVATION FEET FLOW CUBIC FEET PER SECOND STORAGE VOLUME ACRE-FEET SURFACE AREA ACRES TEMPERATURE DEGREES FAHRENHEIT RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF OPERATION STATION FLOW PEAK 6-HOUR 24-HOUR 72-HOUR AREA STAGE MAX STAGE HYDROGRAPH ATAREA178.11.937.2.1..02ROUTED TOPONDA31.12.106.2.1..02 .02 959.72 12.10 *** NORMAL END OF HEC-1 *** Knoxville BMP Manual Stormwater Treatment ST-12 - 11 *May 2003*

ACTIVITY:	Detention Example for HEC-1 & HEC-HMS	ST – 12
Defines the rainfall distribution. Defines the rainfall distribution. Compute storage and outflow data at regular intervals for input.	Detention Example for HEC-1 & HEC-HMS	ST - 12
20mputatio	Ending Date : 03 May 2003 Ending Time : 02:00	
	Time Interval : 2 Minutes	
Knoxville BMP M Stormwater Treat	anual ment ST-12 - 13	May 2003

